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Abstract: An understanding of low-frequency, collective protein dynamics at low temperatures can furnish
valuable information on functional protein energy landscapes, on the origins of the protein glass transition
and on protein-protein interactions. Here, molecular dynamics (MD) simulations and normal-mode analyses
are performed on various models of crystalline myoglobin in order to characterize intra- and interprotein
vibrations at 150 K. Principal component analysis of the MD trajectories indicates that the Boson peak, a
broad peak in the dynamic structure factor centered at about ∼2-2.5 meV, originates from ∼102 collective,
harmonic vibrations. An accurate description of the environment is found to be essential in reproducing the
experimental Boson peak form and position. At lower energies other strong peaks are found in the calculated
dynamic structure factor. Characterization of these peaks shows that they arise from harmonic vibrations
of proteins relative to each other. These vibrations are likely to furnish valuable information on the physical
nature of protein-protein interactions.

1. Introduction

There is a wide variety of vibrational motions in proteins,
ranging from high-frequency (∼10-15 s) localized oscillations
to low-frequency (∼10-11 s) collective modes.1,2 The low-
frequency modes may play an important role in protein function.
For example, it has been recently demonstrated that ligand
binding to an enzyme is accompanied by softening of low-
frequency vibrations and that this contributes significantly to
the binding free energy3. Moreover, normal-mode analyses have
suggested that the conformational paths between different
functional states are initiated by a few, delocalized, low-
frequency modes in the frequency range below 2.5 meV.4-6

Furthermore, ligand dissociation experiments in heme proteins
have demonstrated coherent excitation of low-frequency vibra-
tional modes in the 5-20 meV range, indicating a strong
coupling of these modes with the binding reaction.7,8

A prominent feature observed in low-frequency inelastic
neutron and Raman scattering spectra of glass-forming sub-
stances is the “Boson peak”, defined as an excess in the
vibrational density of states over the Debye level. This feature
is also visible in proteins as a broad band occurring in an energy

range of 1.5-3.5 meV2,9-24 depending on temperature and
hydration. Although a variety of studies has been performed,
the origin of the Boson peak is not very well understood.
Elucidating its origin is of fundamental importance in under-
standing the physical properties of glassy materials, biopolymers,
and biological macromolecules.

The Boson peak appears to be connected to low-temperature
anomalies in the specific heat and thermal conduction of
glasses.20,25-27 The intensity of the peak has been correlated
with the strength of glass-forming substances.25 Several theoreti-
cal models of the Boson peak dynamics have been proposed.
One of these uses coupled classical oscillators with spatially

(1) Frauenfelder, H.; Sligar, S. G.; Wolynes, P. G.Science1991, 254, 1598-
1603.

(2) Frauenfelder, H.; Parak, F.; Young, R. D.Annu. ReV. Biophys. Biophys.
Chem.1988, 17, 451-479.

(3) Balog, E.; Becker, T.; Oetl, M.; Lechner, R.; Daniel, R.; Finney, J.; Smith,
J. C.Phys. ReV. Lett. 2004, 93, 028103.

(4) Levitt, M.; Sander, C.; Stern, P. S.J. Mol. Biol. 1985, 181, 423-447.
(5) Marques, O.; Sanjouand, Y. H.Proteins1995, 23, 557-560.
(6) Seno, Y.; Go, N.J. Mol. Biol. 1990, 216, 111-126.
(7) Groot, M. L.; Vos, M. H.; Schlichting, I.; van Mourik, F.; Joffre, M.;

Lambry, J. C.; Martin, J. L.Proc. Natl. Acad. Sci. U.S.A.2002, 99, 1323-
1328.

(8) Rosca, F.; Kumar, A. T. N.; Ionascu, D.; Ye, X.; Demidov, A. A.; Sjodin,
T.; Wharton, D.; Barrick, D.; Saligar, S. G.; Tonetani, T.; Champion, P.
M. J. Phys. Chem. A2002, 106, 3540-3552.

(9) Smith, J. C.Q. ReV. Biophys.1991, 24, 227-291.
(10) McCammon, J. A.Rep. Prog. Phys.1984, 47, 1-46.
(11) Paciaroni, A.; Stroppolo, M. E.; Arcangeli, C.; Bizzarri, A. R.; Desideri,

A.; Cannistraro, S.Eur. Biophys. J.1999, 28, 447-456.
(12) Cusack, S.; Doster, W.Biophys. J.1990, 58, 243-251.
(13) Diehl, M.; Doster, W.; Schober, H.Biophys. J. 1997, 73, 2726-2732.
(14) Cusack, S.; Doster, W.; Petry, W.Phys. ReV. Lett.1990, 65, 1080-1083.
(15) Ferrand, M.; Dianoux, A. J.; Petry, W.; Zaccai, G.Proc. Natl. Acad. Sci.

U.S.A.1993, 90, 9668-9672.
(16) Fitter, J.Biophys. J. 1999, 76, 1034-1042.
(17) Brown, K.; Erfurth, S.; Small, E. W.; Peticolas, W. L.Proc. Natl. Acad.

Sci. U.S.A.1972, 69, 1467-1469.
(18) Richter, D. J.J. Phys.: Condens. Matter1996, 8, 9177-9190.
(19) Engberg, D.; Wischnewski, A.; Buchenau, U.; Bo¨rjesson, L.; Sokolov, A.

P.; Torell, L. M. Phys. ReV. B 1998, 58, 9087-9097.
(20) Frick, B.; Richter, D.Science1995, 267, 1939-1945.
(21) Wutke, J.; Hernandez, J.; Li, G.; Coddens, G.; Cummins, H. Z.; Fujara,

F.; Petry, W.; Sillescu, H.Phys. ReV. Lett. 1994, 72, 3052-3055.
(22) Hehlen, B.; Courtens, E.; Vacher, R.; Yamanaka, A.; Kataoka, K.; Inoue,

K. Phys. ReV. Lett. 2000, 84, 5355-5358.
(23) Diehl, M.; Doster, W.; Petry, W.; Schober, H.Biophys. J.1997, 73, 2726-

2732.
(24) Smith, J. C.; Kuczera, K.; Tidor, B.; Karplus, M.Physica B1989, 156and

157, 437-443.
(25) Sokolov, A. P.; Rossler, E.; Kisliuk, A.; Quitmann, D.Phys. ReV. Lett,

1991, 71, 2062-2065.
(26) Angell, C. A.Science1995, 267, 1924-1935.
(27) Ngai, K. L.; Sokolov, A.; Steffen, W.J. Chem. Phys.1997, 107, 5268-

5272.

Published on Web 02/02/2006

2356 9 J. AM. CHEM. SOC. 2006 , 128, 2356-2364 10.1021/ja055962q CCC: $33.50 © 2006 American Chemical Society



fluctuating nearest-neighbour force constants on a simple cubic
lattice.28 Another model, based on a soft potential, predicts that
anharmonic localized potential wells are responsible for the
Boson peak vibrational anomaly.29 A mechanism based on the
concept of interacting quasilocal oscillators has also been
proposed.30 Another, a “Two-Order-Parameter” model, proposes
that the Boson peak arises from localized vibrational modes
associated with long-lived locally favored structures that are
intrinsic to the liquid state.31

Strict analogies between glasses or amorphous systems and
proteins are difficult. Glasses are higly viscous liquids outside
thermodynamic equilibrium and can be treated as a mestastable
disordered crystal over relevant time scales due to their
extremely slow solidification dynamics. Also, they display glass
transitions which depend on their cooling rate. These features
can be accounted for by the rugged potential energy landscape
as in proteins. It is, however more justified to talk about
“glasslike” properties of proteins.

It has been proposed that the low-frequency spectrum of a
protein can be interpreted in terms of the vibrations of an elastic
sphere,32 which implies that the characteristic frequency of the
Boson peak should vary with the reciprocal of the radius. This
was observed not to be the case in proteins.33 Far-infrared
emission by Boson peak vibrations in globular proteins led to
a description of the Boson peak as a manifestation of the elastic
limit in the viscoelastic behavior of liquids.34

Extensive MD simulations as a function of temperature,
carried out on both dry and hydrated protein systems reproduce
the dynamic structure factor well, but with the position of the
Boson peak shifted to a lower frequency compared to that of
the experimental value.35,36 A recent MD simulation suggests
that the Boson peak arises from motions distributed throughout
the protein,37 and other work describes the Boson peak in terms
of a hydration-related multiple minima protein energy land-
scape.38

Another important temperature-dependent phenomenon ob-
served in proteins is the dynamical transition, involving an
increase in the atomic fluctuations above the linear regime as a
function of temperature. This dynamical transition, observed at
∼180-220 K in proteins, is driven by solvent molecule
translations39,13 that activate a small number of collective
motions in the protein.40

Here, we examine low-frequency modes in a protein crystal
(myoglobin) at 150 K. At this temperature the majority of
protein motions are expected to be harmonic. This leads to peaks
in the amplitude-weighted density-of-states, i.e., the dynamic
structure factor, that can be identified with specific motions in

the system. The dynamics are calculated using molecular
dynamics simulation and normal-mode analysis of a highly
studied protein, myoglobin. The protein is simulated in a
partially dehydrated crystalline state. This allows analysis of
environment-dependent low-frequency dynamics in a system
with realistic protein-protein contacts and with hydration levels
similar to those in neutron scattering experiments that have been
performed on the same protein.

The simulations provide evidence for considerable structuring
of the low-frequency dynamic structure factor. The Boson peak
is found to be environment-dependent and to consist of a large
number of harmonic vibrations. Interestingly, other sharper
peaks are also found at lower frequencies and are demonstrated
to originate from harmonic interprotein vibrations. The results
point the way to future research into the harmonic dynamics of
protein networks and clusters at low temperatures.

2. Methods

2.1. Molecular Dynamics Simulations.Molecular dynamics simu-
lations were performed of carboxymyoglobin at 150 K in a variety of
environments. The starting structure 1A6G (monoclinic unit cell) was
taken from the Protein Data Bank (http://www.rcsb.org), solved at a
1.15 Å resolution using X-ray crystallography.41 MD simulations were
performed with a primary box replicated with periodic boundary
conditions. Three models were constructed of crystalline monoclinic
carboxymyoglobin of unit cell dimensionsa × b × c of 63.80× 30.63
× 34.42 Å3. The three models differed in the size of the primary
simulation box. In one this comprised of one model unit cell, in the
second, two unit cells (2a × b × c), and in the third, four unit cells
(2a × 2b × c). A further model consisted of a single carboxy-myoglobin
molecule in an orthorhombic primary box of dimensions 40.0× 50.0
× 42.0 Å3.

The hydration of 0.35 h used here corresponds to the hydration of
carboxy myoglobin used in the neutron scattering experiments of ref
23. Hydration was carried out by initially filling up all the spaces in
the crystal with water, energy minimizing, heating to 300 K, equilibrat-
ing for 10 ps with velocity scaling in theNVEensemble, and performing
a constant pressure MD simulation at 300 K for 100 ps. Water molecules
were then randomly removed until the required hydration was achieved.
26 chloride ions were added per unit cell leading to electrically neutral
systems. The total number of atoms was 7174 atoms for the one-unit-
cell simulation, 14 348 atoms for the two-unit-cell simulation, and
28 696 atoms for the four-unit-cell simulation. The simulation model
with a single myoglobin molecule in an orthorhombic box contained
3605 atoms.

Calculations were performed with the CHARMM program42 and the
potential function parameter set CHARMM22.43 Water molecules were
modeled with the TIP3P potential.44 Electrostatic interactions were
computed using the particle mesh Ewald method45 for which the direct
sum cutoff was 16 Å and the reciprocal space structure factors were
computed on a 64× 32 × 32 grid fora × b × c, 128× 32 × 32 grid
for 2a × b × c, 128× 64 × 32 grid for 2a × 2b × c of monoclinic
crystal dimensions, and 64× 64 × 64 grid for orthorhombic crystal
dimensions using sixth-degree B-splines.

The systems were energy minimized to a root-mean-square (RMS)
force gradient of 10-3 kcal/mol/Å. Subsequently the systems were
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uniformly heated to 150 K during 15 ps and equilibrated for 100 ps
with velocity scaling in theNVE ensemble withP ) 1 bar andT )
150 K. Equilibration was continued for an additional 200 ps at constant
temperature and pressure conditions without velocity rescaling. The
temperature and pressure coupling were enforced with the No´se-
Hoover algorithm46-48 using the temperature and pressure piston masses
of 2000 kcal ps2 and 500 au, respectively. Subsequently the NPT
production runs were performed for 1 ns which is sufficiently long to
fully sample the low-frequency vibrations. Coordinates were written
out every 50 fs. Before analysis, all coordinate sets were superposed
on a primary-box reference structure to remove overall unit cell
translation and rotation.

2.2. Normal-Mode Analysis.Normal-mode analyses were performed
with two molecules of MbCO (pdb entry 1A6G) in a monoclinic box
replicated with periodic boundary conditions.49-51 Normal modes were
calculated using the CHARMM program with version 22 of an all-
atom potential function42 and parameters.43 Protein molecules containing
5048 protein atoms and water molecules corresponding to 0.35 g/g of
protein were energy minimized along with the images to an RMS
gradient of 10-11 (kcal/mol Å).

The normal-mode analyses were performed on the energy minimized
structures by diagonalization of the mass-weighted second-derivative
matrices. The analysis resulted in 21 522 modes, 6 of which cor-
responded to the translation and rotation of the whole unit cell. The
inelastic neutron scattering spectrum was calculated from these normal
modes (details discussed in the next section).

2.3. Incoherent Neutron Scattering. 2.3.1. Neutron Scattering
Intensities from MD Simulations. Neutron scattering experiments
measure the dynamic structure factor,S(qb,ω), with qb andE ) pω being
the momentum and energy transfers, respectively. Since the incoherent
scattering length of a hydrogen atom is an order of magnitude higher
than the scattering lengths of all other atoms in the protein and water
molecules, the coherent scattering can be assumed to be negligible and
the total structure factor isS(qb,ω) ) Sinc(qb,ω). S(qb,ω) was computed
by Fourier transforming the intermediate scattering functionI inc(qb, t)
calculated from the MD trajectories:

with

Here,rbi(t) andrbi(0) are the positions of the atomi at timet and time
t ) 0, respectively, obtained from the MD simulations. The quantity
bi(inc) is the incoherent scattering length of atomi. Since in proteins the
hydrogen atoms are distributed throughout the molecule, the neutron
scattering technique probes the global dynamics of the system. The
intermediate scattering function and its Fourier transform, the dynamical
structure factorSinc(qb,ω), were calculated using the package nMOL-
DYN.52 For eachq value and each atom an orientational average over
intermediate scattering functions for a fixed number of isotropically
distributed vectorsqi was performed. The spectrum was smoothed by
applying a Gaussian window of the formW(m) ) exp[-1/2(R(|m|/(Nt

- 1)))2] in the time domain withm ) -(Nt - 1) ...,Nt - 1. The widths
in the time and frequency domains wereσt ) R/T andσν ) 1/(2πσt),

respectively, andT is the total length of the simulation.R was chosen
such that the width in the frequency domain corresponds to an
instrumental full width at half-maximum (fwhm) of 60µeV, i.e., that
of ref 23.

2.3.2. Global Translation, Rotation, and Internal Contributions
of the Individual Molecules to the Structure Factor. Complete
separability of the translation, rotation, and internal motions is not
possible as they are strongly coupled to each other.53 To reduce the
effect of this coupling on the calculated contributions, the translational
contribution of the individual molecules to the total structure factor
was calculated from the MD trajectories from which only the rotational
contribution is removed. Then, from the resulting structure factor which
contains both translational and internal contributions, the structure factor
obtained for the internal contribution alone was subtracted. Thus, the
coupling between the internal and rotational motions is removed. A
similar procedure was adapted to calculate the rotational contribution.
However, the coupling between the translational and the internal motion
and that between the rotational and the internal motions are still present
in the translational and rotational contributions, respectively. The
contribution of only the internal motions of the individual molecules
to the dynamic structure factor was obtained by calculating the structure
factor from trajectories from which the global translation and rotation
of the individual protein molecules were removed. The internal
contribution has coupling with both the translational and rotational
contributions.

2.3.3. Neutron Scattering Intensities from a Harmonic Model.
Assumption of harmonic dynamics permits transformation of eq 1, and
the result can be expanded in a power series over the normal modes of
the protein given by54

where

WR(qb) is the exponent of the Debye-Waller factor, exp[-2WR(qb)],
for atomR and may also be expressed as a sum over the modes

In eqs 2-4, mR is the atomic mass,λ labels the mode,nλ is the
number of quanta exchanged between the neutron and modeλ, and
n(ωλ) is the Bose occupancy.ebλR is the atomic eigenvector for atomR
in modeλ, andωλ is the mode angular frequency.â ) 1/kBT wherekB

is Boltzmann’s constant andT is the temperature.〈uqR
2〉 is the projection

of the mean-square displacement for the atomR on the scattering vector
qb, and the brackets〈...〉 denote a thermal average.

Inλ(XλR) is thenλth-order modified Bessel function given byInλ(XλR)
) 1/nλ!(XλR/2)nλ. Equation 2 is an exact quantum-mechanical expression
for the scattered intensity. The case where allnλ ) 0 corresponds to
elastic scattering. The case where the∑λnλ ) 1 corresponds to single
quantum processes called one-phonon scattering. Higher order terms
represent other multiphonon processes. Substitution of normal-mode
eigenvectors and eigenvalues in eq 2 allows the calculation of the
incoherent inelastic neutron scattering in the harmonic approximation.
The calculations performed here are within the one-phonon approxima-
tion limit which is valid for q f 0, i.e.,
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S(qb,ω) )∑
R

bR
2 exp[-2WR(qb)]∏

λ

[∑
nλ

exp(nλpωλâ/2) Inλ
(XλR)]

δ[ω - ∑
λ

nλωλ] (2)

XλR )
p(qb‚ebλR)2

2mRωλ sinh(pωλâ/2)
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2WR(qb) ) ∑
λ

p(qb‚ebλR)2

mRωλ

[2n(ωλ) + 1] ) q2〈uqR
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Equation 5 represents the full quantum-mechanical scattering function
for the one-phonon scattering.

2.4. Principal Component Analysis.Principal component analysis
is a convenient method for representing the conformational space
explored in an MD trajectory.55,56 The set of principal components is
the solution to the eigenvalue problem of the second-moment matrix,
A, the elements of which are given by

whererbi and rbj are the positions,rb i
m and rb j

m, the mean positions, and
mi andmj, the masses of atomi and j; the average is taken over the
time frames of the trajectory. The diagonalization ofA yields the
eigenvectors,wk, i.e., the principal components and their associated
eigenvalues,øk.

To determine the contributions of principal component modes, the
trajectory,hB i

k(t) of a mode or a set of principal modes was calculated
by projecting the MD trajectory of the internal motion onto thek th
principal component, i.e.,

where rbi(t) is the position vector, andrb i
m, the mean position vector.

The neutron scattering spectrum was then calculated fromrb i
new(t)

given by

The contribution of the principal modes to neutron scattering spectra
was quantified by defining

whereS(qb,ω)all and S(qb,ω)PCmodesare the structure factors calculated
from the MD trajectories and contributions from a set of modes,
respectively.

3. Results and Discussions

3.1. Comparison of Experimental versus Calculated Spec-
trum. To avoid interference from the solvent hydrogens,
experimental samples are usually H/D exchanged. Here, MD
simulations of the crystal were performed with the water content
(H2O) of 0.35 g/g of protein. However, the neutron scattering
spectrum is calculated using scattering cross-sections of D for
all exchangeable hydrogen atoms. To test the validity of this
approximation a further MD simulation was performed with the
exchangeable hydrogens replaced by deuteriums (by doubling
the hydrogen masses). The spectra calculated with these two
different approaches are shown in Figure 1 and are very similar.
The “Boson peak” is that at∼2 meV. Interestingly, an additional
peak, at∼1 meV, is observed in the calculation. The neutron
scattering spectra calculated from MD simulation of monoclinic
unit cells of carboxymyoglobin with primary cells of varying
dimensions and numbers of molecules are shown in Figure 2.
The Boson-peak calculated from the primary cell containing
eight molecules reproduces very well the experimentally
observed Boson peak in ref 23.

The ∼1 meV peak is not clearly visible, although it may
correspond to a poorly resolved “shoulder” in the experimental
spectrum of ref 23. However, the 100 K neutron scattering
spectrum from plastocyanin57 does display a peak at∼1 meV,
which may originate from interprotein interactions.

3.2. Elucidation of the∼1 meV Peak.The presence of an
∼1 meV peak in all simulation systems with varying dimensions
of the primary cell and numbers of molecules shown in Figure
2 indicates that the peak is not an artifact due to the periodic
boundary conditions. The crystal spectra calculated with two
and four unit cells in the primary simulation box exhibit a further
peak at∼0.6 meV. This suggests that the peaks observed at
∼1 meV and∼0.6 meV could arise from the interaction between
the proteins in a unit cell and between the unit cells, respectively.

To further examine the origin of the peak at∼1 meV, the
neutron scattering spectrum, calculated from the simulation with
a single unit cell of MbCO of dimensionsa × b × c as the
primary image, was decomposed into whole-molecule transla-
tional and rotational and internal motional contributions. The
resulting spectra are shown in Figure 3. The whole-molecule
translation makes the largest contribution to the 1 meV peak.
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δ(ω - ωλ) (5)

Aij ) xmimj〈( rbi(t) - rbi
m)( rbj(t) - rbj
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hBi
k(t) ) ( rbi(t) - rbi
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new(t) ) (hBi

k(t) + rbi
m) (8)

R ) 1.0- 〈(S(qb,ω)all - S(qb,ω)PCmodes/S(qb,ω)all)〉ω (9)

Figure 1. Structure factorS(q,ω) calculated atq ) 1.9 Å-1 as a function
of ω for one unit cell of protein containing two protein molecules hydrated
to 0.35 h and using a resolution function of fwhm 60µeV, i.e, that in ref
23. Solid and dashed lines are from the simulations carried out with H2O
and D2O as the solvent, respectively. Simulations and experiments were
performed atT ) 150 K. The values are normalized such that∑binc

2 ) 1
and elastic intensity is 1. The structure factors were calculated after removing
the global translation and rotation of the unit cell.

Figure 2. Structure factorS(q,ω) calculated atq ) 1.9 Å-1 for MbCO
crystal hydrated to 0.35 h, as a function ofω for primary cell of dimensions
a × b × c containing two molecules, 2a × b × c containing four molecules,
and 2a × 2b × c containing eight molecules wherea × b × c is the unit
cell of monoclinic crystal. The structure factor obtained with eight molecules
in the primary cell is closer to the experimentally observed Boson peak.
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The contribution of rotation is small. The structure factor from
the internal contribution has an overall higher intensity at all
the frequencies compared to the translational and rotational
components due to quasielastic scattering but also contributes
relatively little to the∼1 meV peak. The sum of the individual
contributions do not add up to the total spectrum due to strong
coupling between these motions such that their complete
separability is not possible.53

The intermolecular interaction in protein crystals can be
further probed by calculatingd(t), the distance between the
center of mass of two proteins in the primary simulation cell as
a function of time, and this is shown in Figure 4a. The
corresponding autocorrelation function,C(τ) ) 〈d(t)|d(t + τ)〉
is shown in Figure 4b. The oscillations observed in the
autocorrelation function indicate intermolecular vibration. The
period of oscillation,T in Figure 4b, is∼3.6 ps. Fourier
transformation of the autocorrelation function generates the
power spectrum, providing the associated frequencies; this is
shown in Figure 4c. The frequency corresponding toT ≈ 3.6
ps is 1.1 meV which therefore accounts for the∼1 meV peak
observed in the structure factor calculated from the MD
simulation of the one unit cell primary box. These observations
indicate that the∼1 meV peak observed in the structure factor
plot indeed arises from the intermolecular vibration between

proteins in the unit cell. As can be seen from Figure 4c, center
of mass motion contributes also to several vibrations below 0.5
meV which are not observed as individual peaks in the structure
factor due to their being smeared out by the resolution function
used.

Within the harmonic approximation it is possible to calculate
the effective force constantk for the intermolecular interaction
between the two protein molecules using the relationshipk )
ω1

2µ, where ω1 is the frequency of oscillation andµ is the
reduced mass. The knowledge of effective force constant can
then be used to estimate the frequency,ω2 of intermolecular
interaction in the case where the reduced mass is doubled (2µ),

given byxω1
2/2. From the structure factor calculated from the

MD simulation with four unit cells with dimension 2a × 2b ×
c as the primary box, if we assume that the peak observed at
1.1 meV is due to the intermolecular interaction between
proteins in the unit cell, then the frequency obtained by doubling
the reduced mass corresponds to 0.77 meV. We observe a peak
at the frequency of 0.57 meV for the same simulation system.
The difference between the observed and the calculated
frequency could be due to the assumption that the center of
mass vibration between the molecules is harmonic. Thus, the
0.57 meV can be tentatively attributed to the intermolecular
vibration between the unit cells.

The neutron scattering spectrum calculated from normal
modes for one unit cell of MbCO crystal hydrated to 0.35 g/g
of protein is shown in Figure 5. About 180 normal modes lie
in the frequency range below 4 meV, where the main vibrational
features are observed. Individual peaks are seen in the spectrum
arising principally from peaks in the density of states. That these
are not seen experimentally is likely due to anharmonicity and
conformational heterogeneity.58 However, the overall shape of
theS(qb,ω) envelope closely resembles that obtained using MD.

To investigate the origin of the vibrational features observed
in the normal-mode analysis, the atomic trajectories were
calculated as a superposition of the first 180 normal modes.
The center of mass trajectories of the individual proteins were

Figure 3. Contributions of rigid-body translational, rotational, and internal
motions to the structure factorS(q,ω) calculated atq ) 1.9 Å-1 as a function
of ω for one unit cell of protein containing two molecules at 0.35 h.

Figure 4. (a) Time series of the distance between the centers of masses of two proteins in the unit cell of hydrated MBCO crystal containing two protein
molecules. (b) Autocorrelation function of the distance between the two proteins calculated in part a. (c) Power spectrum calculated by Fourier transforming
the autocorrelation function in part b, shown together withS(q,ω) calculated from the full MD simulation.
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then extracted. The distance between the centers of masses is
plotted as a function of time in Figure 6a. The autocorrelation
function of the distance between the centers of masses and its
Fourier transform, the power spectrum, are shown in Figure 6b
and 6c. The oscillating behavior of the autocorrelation function
obtained from the distances between the centers of masses as a
function of time is an indication of intermolecular center-of-
mass vibration. The period of oscillation in Figure 6b is∼3.6
ps which in turn corresponds to a frequency of∼1.1 meV. The
power spectrum is found to display a peak at 1.0 meV.

MD simulation and normal-mode analysis thus both inde-
pendently confirm that the ultralow-frequency peak at∼1 meV

arises from the intermolecular vibration between the protein
molecules.

Further evidence that this peak arises from intermolecular
interaction is obtained from the absence of the peak in a
simulation system containing only one protein in an orthor-
hombic box of water, as shown in Figure 7. The periodic

boundary conditions exclude the relative motion of primary and
image atoms and, thus, interprotein motions.

3.3. Origin of Boson Peak.In contrast to the 1 meV peak,
the Boson peak motions are dominated by internal dynamics.
The motions contributing to the Boson peak are now further
investigated using principal component analysis. Scattering from
the first PCmodesprincipal component modes,S(qb,ω)PCmodes,
was calculated by subtracting the dynamic structure factor,
S(q,ω) calculated using all modes other than the firstPCmodes
from S(q,ω). The valueRwas calculated by scaling the intensity
of the total spectrum,S(qb,ω), such that it matchesS(qb,ω)PCmodes

at 1.3 meV.
The contributions of the principal component modes to the

Boson peak and theR quantifying these contributions are
displayed in Figure 8. More than 90% of the Boson peak arises
from the first 200 principal component modes, and the propor-
tion rises to 99.6% with an additional 300 modes. Using the

Figure 5. Inelastic neutron scattering spectrum calculated from the normal
modes of one unit cell of hydrated monoclinic MbCO crystal containing
two protein molecules. (Top) nonconvoluted neutron scattering spectra.
(Bottom) Convoluted with the experimental resolution of fwhm) 60 µeV.

Figure 6. (a) The Distance between the centers of masses calculated from the normal modes of two proteins in the unit cell of hydrated MBCO crystal
containing two protein molecules, as a function of time. (b) The autocorrelation function of the distance between the two proteins calculated in parta. (c)
The power spectrum calculated from Fourier transforming the autocorrelation function in part b, together withS(q,ω) from Figure 5.

Figure 7. Structure factorS(q,ω) calculated atq ) 1.9 Å-1 for a monoclinic
crystal of MBCO containing two carboxymyoglobin molecules in a unit
cell and one carboxymyoglobin molecule in an orthorhombic box. Both
systems are hydrated to 0.35 g/g of protein.
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600 lowest-frequency modes accounts for 100% of the Boson
peak. The low-frequency modes are collective motions in
the protein, whereas higher frequency modes are more lo-
cal.4,59,60Consequently, the Boson peak arises from collective
motions.

The effective frequencies of the principal components are
displayed in Figure 9. The contribution of the first five principal
component modes to the Boson peak is<5%. Addition of five
more modes which lie in the region of∼1-1.3 meV increases
the contribution to 18%. Inclusion of modes up to the frequency
∼8.7 meV covers the whole Boson peak.

The modes contributing to the Boson peak are now further
investigated by calculating the effective free energy along the

k th mode given byµk(xk) ) -kBT ln Pk(xk). Furthermore,
information on the anharmonicity can be obtained fromPk(xk),
the probability distribution along the modek.

For harmonic motionPk(xk) is a Gaussian, and the standard
error σk of a Gaussian fit toPk(xk), obtained using the relation

σk
2 ) 1000[Pk(x) - Gk(x)]2, is therefore zero for harmonic

modes. Nonzero values ofσk indicate anharmonicity.

The free energy profile along principal component mode 1
is shown in Figure 10a. This mode is clearly strongly anhar-
monic and exhibits multiminimum behavior. The first mode
contributes the most to the total root-mean-square fluctuation,
as shown in Figure 10b. However, the first mode does not
contribute to the Boson peak. The free energy landscapes along
the 2-5 largest-amplitude modes, none of which contribute to
the Boson peak, are also anharmonic. A representative mode
among them (principal component mode 5) is shown in Figure
10c.

It is well-known that the few very low-frequency principal
component modes do not converge61-63 due to the poor
sampling. However, this poor sampling concerns only a small
number of highly anharmonic modes. These highly anharmonic
modes, which describe diffusive motion, contribute only to
quasielastic scattering, at lower frequencies than those inves-
tigated here, and not to the Boson peak or the protein interaction
vibrations. The PCA modes of importance in the present work
are harmonic, or nearly harmonic, and their effective frequencies
are high enough that they are well sampled during the simulation
time. Indeed, the information present in these modes is very
similar to that present in a normal-mode analysis.

Figure 8. ContributionsS(q,ω)PCmodesfrom sets of principal component modes to the structure factor corresponding to the internal motions (global translation
and rotation of the individual protein molecules removed) of protein atoms calculated for one unit cell of monoclinic MBCO crystal containing two protein
molecules, at 150 K at 0.35 g/g of protein. Inset: Contributions from set of principal component modesS(q,ω)PCmodesto the total structure factorS(q,ω)
quantified by a quantity,R. The rangeE used for the calculation isE ) 1.3-4.4 meV.

Figure 9. Contributions (R) from set of principal component modes to the
structure factorS(q,ω) corresponding to the internal motions of protein atoms
calculated for one unit cell of monoclinic MBCO crystal containing two
protein molecules, at 150 K and 0.35 g/g of protein, along with the effective
frequencies of the principal component modes. Solid lines in the upper right
corner indicate the effective frequency corresponding to the 600th
mode.
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The free energy landscapes obtained for some modes that do
contribute to the Boson peak are shown in Figure 10d-f. These
modes haveσk values less than 0.5, indicating close to harmonic
behavior.

The collective nature of the modes contributing to the Boson
peak can be investigated by calculating the information entropy
S, the exponential of which gives the number of atoms that a
particular mode spans.64 The information entropy is calculated
using the relationS ) -∑i)1

N pi ln pi, whereN is the total
number of atoms andpi is the projection of the coordinates onto
the particular principal component mode. A plot ofeS as a
function of mode number is shown in Figure 11. The∼600
modes which contribute to the Boson peak each span more than
4000 atoms indicating their highly collective nature.

The present analysis indicates that protein-protein interac-
tions do not directly contribute to the Boson peak. However,
their presence is essential for reproduction of the Boson peak
at the experimental frequency. Simulations with a single protein
molecule shift the peak to lower frequencies. The presence of

protein-protein interactions improves the description of the
experimental (powder) environment while rigidifying the col-
lective vibrations that give rise to the Boson peak, shifting them
to higher frequencies. As can be seen from Figure 7, the intensity
of the neutron scattering structure factor calculated from an MD
simulation of a single protein in an orthorhombic box is higher
than that obtained from the single unit-cell monoclinic crystal
simulations. Also, the root-mean-square fluctuation of the
protein in the orthorhombic box and in a crystal environment
was found to be 0.38 Å and 0.35 Å, respectively. This indicates
greater flexibility of the protein molecule in the absence of
crystal contacts. The absence of intermolecular interactions
softens the modes that give rise to the Boson peak, and thus

(58) Lamy, A.; Souaille, M.; Smith, J. C.Biopolymers1996, 39, 471-478.
(59) Go, N.; Noguti, T.; Nishikawa, T.Proc. Natl. Acad. Sci. U.S.A.1983, 80,
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(62) Hess, B.Phys. ReV. E 2002, 65, 031910.
(63) Faraldo-Go´mez, J. D.; Forrest, L. R.; Baaden, M.; Bond, P. J.; Domene,

C.; Patargias, G.; Cuthbertson, J.; Sansom, M. S. P.Proteins: Struct.,
Funct., Bioinf.2004, 57, 783-791.

(64) Yu, X.; Leitner, D. M.J. Phys. Chem. B2003, 107, 1698-1707.

Figure 10. (a) Free energy profile along principal component mode 1. (b) Contributions from set of principal component modes to the mean square fluctuations
for a crystal system containing one unit cell of monoclinic MBCO crystal at temperature 150 K at 0.35 g/g of protein. The mean square fluctuation from a
set of 1 toN principal component modes, RMSF1-N

i , of an atomi was calculated from different sets (same as in Figure 8) of modes, and their contribution
to the total mean square fluctuations is obtained by the expression RMSF1-N

i /RMSF1-all
i . (c) Free energy profile along principal component mode 5. (d-f)

Free energy profiles along some of the principal component modes that contribute to the Boson peak.

Figure 11. Value ofes, a measure of the number of atoms that participate
in a principal component mode as a function of principal component mode
number.
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single molecule simulations hitherto performed have not been
able to reproduce the experimental Boson peak frequency.

The experimentally observed Boson peak is smoother than
the Boson peak calculated from MD simulations. However, as
seen in Figure 2 (thickest line), increasing the number of
molecules in the primary simulation box leads to a neutron
scattering spectrum that is closer to the experimentally observed
Boson peak. This observation further emphasizes the importance
of an accurate description of the environment in describing low-
frequency internal protein dynamics.

4. Concluding Remarks

Here, MD simulations and normal-mode analysis have been
used to examine low-frequency motions in a protein at 150 K.
An accurate description of the environment is found to be
essential for reproducing the Boson peak (measured on powders)
at the experimentally observed frequency. The Boson peak
motions are identified to be collective and harmonic at the
temperature investigated here. Earlier calculations37 suggested
that the Boson peak arises from motions distributed throughout
the protein, consistent with our analysis here. The anharmonic,
multiminimum modes that contribute most to the root-mean-
square fluctuations, and thereby to the dynamical transition in
proteins, do not contribute to the Boson peak. The inelastic
neutron scattering spectrum obtained from normal-mode analysis
also reproduces the Boson peak providing further evidence for
the harmonic origin of the associated dynamics.

Of particular interest is the identification here of intermo-
lecular vibrations at ultralow frequency (below 1 meV) in the
dynamic structure factor also observed in the experimental

spectrum of Plastocyanin.57 The presence of an intermolecular
vibration manifested as a clear peak in the low-frequency
dynamic structure factor opens up the possibility of using
neutron scattering spectroscopy as a tool for investigating
interprotein vibrations. However, these interactions have very
low frequencies and hence require instruments of very high
energy resolution.Polycrystallinepowders would be expected
to have similar contacts as in the case of the crystal simulations
and relatively sharp protein interaction vibrational lines. In
contrast,amorphouspowder may have a wider range of contact
modes and thus a broader interaction peak. The extent of this
broadening is of fundamental interest and may provide informa-
tion on the relation between the properties of protein contact
interfaces and interaction strengths. Investigating the temperature
and hydration dependence of these ultralow-frequency modes
should provide significant insight into the nature of protein-
protein interactions. These experimental studies are in progress.
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